
CS106B
Summer 2013

Handout #08
July 2nd, 2012

Section Handout 1

Sections will meet once a week to give you a more intimate environment to discuss course material,
work through problems, and raise any questions you have. Each week we will hand out a set of section
exercises, which are the problems proposed for section that week. While we will not be collecting or
grading these problems, you will receive greater benefit from section if you’ve looked over the
problems in advance and tried to sketch solutions. Your section leader won’t necessarily cover every
exercise in depth, so be sure to speak up if there are particular problems you’d like to focus on.
Solutions to all problems will be given in section so you can work through any remaining exercises on
your own. Many of the section problems have been taken from old exams, so they are also an excellent
source of study questions when exam time rolls around.

Problem 1: Censorship

Your first problem is to design and implement a function censorString that takes two strings as input
and eliminates from the first string all characters that are present in the second. Thus

"Stanford University" with "nt" removed becomes "Saford Uiversiy"
"Llamas like to laugh" with "la" removed becomes "Lms ike to ugh"
and so on . . .

Note that the function is case sensitive, so that the uppercase L in Llamas stays there.

You could design this function to operate in two different ways. One way is to have the function return
a new string, leaving the original string unchanged. A second way is to write a procedure that modifies
the original string. For this section, try writing both of these versions. First, write a function that
returns a completely new string with the following prototype:

string censorString1(string text, string remove);

When you complete the first version, write a function that modifies the original string instead. This
version should have the following prototype:

void censorString2(string & text, string remove);

Problem 2. How Did We Do?

When we grade your exams, we typically keep track of various statistics like the minimum, maximum,
and mean (i.e., the traditional average) scores. Write a function

void readStats(string fname, int & min, int & max, double & mean);

that takes the name of an input file and three reference parameters that will hold this statistical
information. Your implementation should open the file, read the scores one line at a time, close the
file, and then return to the client with the values of min, max, and mean correctly set. For efficiency’s
sake, your function should make only a single pass over the file. Your implementation should also call
error with an appropriate message if the file does not exist or if any of the scores are not in the range 0
to 100.

- 1 -

Problem 3. Stacking Cannonballs (adapted from Chapter 7, exercise 1, page 346)

Suppose that you have somehow been transported back to 1777 and the Revolutionary War. You have
been assigned a dangerous reconnaissance mission: evaluate the amount of ammunition available to the
British for use with their large cannon, which has been shelling the Revolutionary forces. Fortunately
for you, the British—being neat and orderly—have stacked the cannonballs into a single pyramid-
shaped stack with one cannonball at the top, sitting on top of a square composed of four cannonballs,
sitting on top of a square composed of nine cannonballs, and so forth. Unfortunately, however, the
Redcoats are also vigilant, and you only have time to count the number of layers in the pyramid before
you are able to escape back to your own troops. To make matters worse, computers will not be
invented for at least 150 years, but you should not let that detail get in your way. Your mission is to
write a recursive function numCannonballsInStack that takes as its argument the height of the
pyramid and returns the number of cannonballs therein.

Problem 4: Xzibit Words

Some words contain other words as substrings. For example, the word “pirates” contains a huge
number of words as substrings:

a

at

ate

ates

es

I

irate

pi

pirate

pirates

rat

rate

rates

Note that “pirates” is a substring of itself. The word “pat” is not considered a substring of “pirates,”
since even though all the letters of “pat” are present in “pirate” in the right order, they aren't adjacent to
one another.

Let's call a word an “Xzibit word” if it contains a large number of words as substrings. Write a
function

string mostXzibitWord(Lexicon& words);

that accepts as input a Lexicon of all words in English, then returns the word with the largest number
of words contained as substrings.

- 2 -

Problem 5: RNA Protein Codes

RNA (ribonucleic acid) is a chemical that can encode genetic information. Plant and animal cells use
RNA for a variety of cell functions, while viruses often use RNA as their primary genetic storage.

Each strand of RNA consists of a series of nucleotides – adenine (A), guanine (G), uracil (U), and
cytosine (C) – and a strand of RNA can be thought of as a string over those four letters. Because of
this, computational geneticists often treat DNA and RNA as strings and run algorithms on those strings
to deduce their properties.

RNA is used by a cell to encode proteins, biological molecules essential to cell function. Each protein
consists of a series of amino acids that, strung together, serve some complex purpose. The actual
letters in an RNA strand spell out what amino acids need to be combined together to produce the
overall protein. So how exactly are these amino acids represented? In RNA, letters are grouped into
clusters of three letters called codons. Each codon encodes a specific choice of amino acid. When
decoding RNA, the cell reads these codons in sequence and assembles the protein one amino acid at a
time. For example, the RNA strand

GGGAUGAAUAUCUCGGCG

would be treated at this sequence of three-letter codons:

GGG AUG AAU AUC UCG GCG

The cell would then use the codons to determine what amino acids to string together into a protein. In
this case, these codons represent the following sequence of amino acids:

GGG AUG AAU AUC UCG GCG

Glycine Methionine Asparagine Isoleucine Serine Alanine
So the generated protein would have amino acids ordered as glycine, then methionine, then aspargine,
then isoleucine, then serine, and finally alanine.

An important detail is that each strand of RNA does not encode just one protein; typically, a single
strand of RNA encodes many different proteins. How, then, does the cell know where each protein
starts and stops? There is an ingenious system set up for just this purpose. In an RNA strand, the
codon AUG has two meanings – it can code for methionine (as shown above), but it also acts as a
special “start of protein” marker. As a cell scans across an RNA strand, if it encounters the codon AUG,
it begins assembling a protein starting at that location. It then continues to assemble the protein one
amino acid at a time by decoding codons in sequence. The cell stops assembling base pairs when it
encounters one of three “stop” codons (UAA, UAG, or UGA) that act as an “end-of-protein” marker. The
cell can then keep scanning across the RNA until it finds another AUG start codon, at which point the
process repeats. For example, consider this RNA strand:

GCAUGGAUUAAUAUGAGACGACUAAUAGGAUAGUUACAACCCUUAUGUCACCGCCUUGA

This would be decoded as follows:

GC Skip letters until we find AUG.

AUGGAUUAA Read from AUG until we hit a stop codon (here, UAA)

U Skip letters until we find AUG.

AUGAGACGACUAAUAGGAUAG Read from AUG until we hit a stop codon (here, UAG)

UUACAACCCUU Skip letters until we find AUG.

- 3 -

AUGCACCGCCUUGA Read from AUG until we hit a stop codon (here, UGA)

Your job is to write a function

Vector<string> findProteins(string& rna, Map<string, string> codons);

that accepts as input a string of RNA and returns a Vector of all the proteins that would be formed
from that RNA. The first parameter represents the actual string of RNA, and the second parameter is a
Map from three-letter codons to the name of the amino acid they represent (or the special string
"stop" if the codon is a stop codon). For example, running this function on the above RNA strand
would return the Vector holding the stings

methionine, asparitic acid (encoded by AUGGAUUAA)

methionine, arginine, arginine, leucine, isoleucine, glycine (encoded by AUGAGACGACUAAUAGGAUAG)

methionine, serine, proline, proline (encoded by AUGUCACCGCCUUGA)

You can assume that all the proteins are properly terminated, which means that if you find an AUG
codon then there will be a matching stop codon before the end of the protein.

- 4 -

